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A b s t r a c t. It is beneficial to develop pedotransfer relation-
ships to estimate infiltration equation coefficients in site-specific 
conditions from readily available data. No systematic studies have 
been published concerning the relationships between the accura-
cy of the infiltration equation and the accuracy of the predicted 
coefficients in this equation. The objective of this work was to 
test the hypothesis that, for the same infiltration data, the accu-
racy of pedotransfer predictions for coefficients in an infiltration 
equation is greater for the infiltration equation that performs bet-
ter. The hypothesis was tested using the commonly employed 
Horton and Mezencev (modified Kostiakov) infiltration equations 
with data from the Soil Water Infiltration Global database. The 
random forest machine learning algorithm was used to develop 
the pedotransfer model. The Horton and the Mezencev models 
performed better with 928 and 758 datasets, respectively. The 
accuracy of the estimates of the infiltration equation coefficients 
did not differ substantially between the estimates obtained from 
all data and from the data where the infiltration equation had low-
er root-mean-squared error values. The root-mean-squared error 
values of the pedotransfer estimates decreased by 2 to 25% when 
only datasets with the same infiltration measurement method were 
considered. The development of predictive pedotransfer equations 
with the data obtained from the same infiltration measurement 
method is recommended.

K e y w o r d s: infiltration modelling, random forest, Soil Water 
Infiltration Global database

INTRODUCTION

Infiltration is the key process of the hydrological cycle. 
Infiltration estimates are of paramount importance in flood 
and drought management, irrigation and drainage system 
design, groundwater recharge assessment, subsurface flow, 
and contaminant transport investigation and modelling. 
A large number of equations have been proposed to sim-
ulate and predict infiltration (Mishra et al., 2003). Both 
physics-based equations, e.g.: Brutsaert (1977), Green 
and Ampt (1911), Kutílek and Krejča (1987), Philip 
(1957), Swartzendruber (1987), and empirical equations, 
e.g. Kostiakov (1932), Horton (1940), Holtan (1961), 
Mezencev (1948) are in use.

Infiltration measurements are both time consuming and 
labour-intensive and are therefore impractical for large-
scale projects. Such projects benefit from predictive models 
that relate the parameters of the infiltration equations to the 
readily available or more easily attainable site-specific data. 
Estimating the parameters of the infiltration equations from 
their soil and landscape properties has led to the develop-
ment of special types of pedotransfer function (Pachepsky 
and Rawls, 2003). The parameters of various infiltration 
equations have been estimated using basic soil properties, 
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such as clay, silt, and sand content, organic matter content, 
and initial soil water content (Lei et al., 2020; Pandey and 
Pandey, 2019; Santra et al., 2021; Van de Genachte et al., 
1996). Soil properties, which are known to be informative 
with regard to site-specific or region-specific conditions 
were often included as predictors. For example, Rahmati et 
al. (2017) included electrical conductivity and wet aggre-
gate stability for arid soils in Iran, Brevnova (2001) added 
the SCS curve number for a mountainous area in the USA. 
Soil hydraulic parameters such as water retention parame-
ters and hydraulic conductivity appeared to be influential 
predictors in the studies of Parchami-Araghi et al. (2013), 
Shao and Baumgartl (2014), and Salahou et al. (2020). 
Various vegetation-related parameters were also found to 
be important predictors of the parameters in infiltration 
equations. Shao and Baumgartl (2014) noted that each infil-
tration parameter was controlled by not only soil factors but 
also by vegetation and rainfall. It was found that soil prop-
erties alone were not sufficient to predict the infiltration 
parameters. Ground cover and root contents were import-
ant predictors in the works of Kidwell et al. (1997) and van 
de Genachte et al. (1996). Reports concerning the effect 
of infiltration measurement methods on the parameters of 
infiltration equations have been published (Maneshwari, 
1997; Mazloom and Foladmand, 2013), but remain scarce.

Although the satisfactory dependencies of the param-
eters of infiltration equations on soil and vegetation 
attributes were in many cases established using linear 
regressions (Kidwell et al., 1997; Brevnova, 2001; Shao 
and Baumgartl, 2014; Pandey and Pandey, 2019; Santra et 
al., 2021), it was noted that imposing linear relationships 
ignores the possible nonlinearity in sought after dependen-
cies, and may misdirect the search for the most influential 
predictors. Machine learning algorithms that allow for 
the mitigation of these problems appeared to be a suit-
able means for estimating the parameters of infiltration 
equations. Parchami-Araghi et al. (2013) applied artificial 
neural networks (ANN) to estimate the parameters of six 
infiltration models. Rahmati et al., (2017) demonstrated 
the advantages of machine learning algorithms ANN and 
GMDH over multiple linear regression in the development 
of a pedotransfer relationship for parameter estimation in 
Kostiakov and Green-Ampt infiltration equations. Lei et al. 
(2020) applied the support vector machines (SVM) algo-
rithm and demonstrated its advantage over ANN and linear 
regression.  

The accuracy of the infiltration models was compared 
by using datasets representing local or regional conditions, 
it was found that the performance of the infiltration equa-
tions varied. In particular, the Horton equation performed 
best at 16 sites in experiments with the tillage effect con-
cerning infiltration in Brazil (de Almeida et al., 2018), in 
experiments involving a comparison of infiltration equa-
tions at six locations in Pakistan (Farid et al., 2019), and 
in a 42-site  study on pedotransfer function evaluation in 

Ethiopia (Bayabil et al., 2019). The Modified Kostiakov 
equation known also as the Mezencev and Lostiakov-
Levis equation was noted by Furman et al. (2006) as the 
most commonly used infiltration function in surface irri-
gation applications. The Dashtaki et al. (2009) comparison 
concluded that the Mezencev equation provided the best 
site-independent performance across 123 sites representing 
different soil series.  

The pedotransfer models designed to obtain the coeffi-
cients of infiltration equations were usually developed for 
a single equation, and sometimes for several equations, from 
a single dataset obtained with a single infiltration measure-
ment method. The performance of the infiltration equation 
with this dataset and the infiltration measurement method 
used were not considered as factors affecting the pedo-
transfer predictions of the infiltration equation coefficients. 
Our hypotheses were that: (a) the accuracy of a coef- 
ficient prediction model for a particular infiltration equa-
tion may be improved with the data with which this 
infiltration equation performs better, and (b) the infiltration 
measurement method may be an influential predictor of the 
infiltration equation coefficients. Our objective was to test 
these hypotheses using certain Horton and Mezencev infil-
tration equations and the large international soil infiltration 
database SWIG. We were also interested in analysing the 
input variable importance in the models for the infiltration 
equation parameters as determined by the random forest 
algorithm which was employed in this work.

MATERIALS AND METHODS

The flowchart of the modeling work is shown in Fig. 1. 
The data were extracted from the Soil Water Infiltration 
Global (SWIG) database (Rahmati et al., 2018). The SWIG 
data were collected from 1976 to 2017. The database con-
tains cumulative infiltration data, soil textural information, 
soil bulk density, organic matter content, land use, and the 
infiltration measurement method for 5023 datasets from 
54 different countries across nearly all continents. A small 
number of samples have additional soil properties. Soil 
properties that are available from the SWIG database are 
summarised in Supplemental Table 1 with their statistical 
description. Approximately 76% of datasets contain clay, 
silt, and sand contents. The bulk density and organic carbon 
content are available in 66 and 62% of datasets, respec-
tively. Land-use type is available in approximately 76% 
of datasets. In this study, 22 SWIG categories of land use 
types were grouped into seven categories in this work as 
shown in Supplemental Table 2, agriculture (cropland) is 
the most frequently found land use in the SWIG databases 
with a frequency of 53%, this is followed by grassland, pas-
ture, garden, forest, others, and urban use. 

Several methods were used to measure infiltration 
(Supplemental Table 3). Disc-based infiltrometers (disc, 
minidisc, micro-disc, Hood, and tension infiltrometers) 
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were employed to obtain approximately 51% of the data-
sets. The mini disc infiltrometer is the most frequently 
reported infiltration method in the SWIG database with 
a value of about 23% (1140 out of 5023). The double ring 
infiltrometer is the second most frequently represented 
infiltration method, with 16% of datasets.  The disc infil-
trometer with 12% and the single ring infiltrometer with 
11% are ranked as the third and fourth methods by their 
occurrence in the SWIG.

Two empirical equations: Horton and Mezencev were 
selected to evaluate their performance at simulating infil-
tration in this study. The infiltration model equations are 
listed in Table 1. Both equations are three-parametric. To 
avoid confusion, the parameters were renamed h1, h2, h3 for 
Horton, and m1, m2, and m3 for the Mezencev equation as 
shown in Table 1. Cumulative infiltration data from SWIG 
were used to estimate certain parameters of the Horton and 
Mezencev infiltration models using R version 3.53 (R core 
team, 2019). The NLS-search routine with mapply was used 
to fit the infiltration equation. Approximately 200 datasets 
were found in which the cumulative infiltration oscillated. 
Datasets with more than five oscillations were excluded 
before computing parameters and outliers of parameters 
were also removed after computing. Outliers were elimi-
nated using the interquartile range. 

The performance of the infiltration equations was eval-
uated using the root-mean-squared error (RMSE): 

where: n is the total number of observations, Yi
obs is the ith 

observation of cumulative infiltration, and Yi
sim is the ith 

simulation of the cumulative infiltration. 
The results of fitting the Horton or Mezencev models 

to all datasets were referred to as H-all and M-all. H-best 
and M-best abbreviations were used for the results obtained 
from the subsets of the database for which the Horton mod-
el produced a smaller RMSE than the Mezencev model and 
vice versa, respectively. H-best and M-best were further 
subdivided into groups of datasets with the same measure-
ment method. The largest number of datasets where the 
Horton equation performed better were obtained through 
the use of the minidisc infiltrometer. The largest number 
of datasets where the Mezencev equation performed bet-
ter were obtained with the double ring infiltrometer. The 
abbreviation H-MDI was used for the results obtained with 
the minidisc infiltrometer for the Horton equation with the 
datasets in which the Horton equation performed better 
than the Mezencev equation.  The abbreviation-DRI was 
used for the results obtained with the double ring infiltrom-
eter for the Mezencev equation with the datasets in which 
the Mezencev equation performed better than the Horton 
equation.   

Fig. 1. Flowchart of pedotransfer modelling in this work. 
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In this work, the random forest algorithm (RF) was used 
to predict certain parameters from infiltration models. The 
RF is a popular machine learning algorithm for prediction 
and classification. It is known to be a relatively simple 
machine learning algorithm to train and tune (Hastie et al., 
2009) which builds many decision trees and averages their 
predictions to obtain a desirable output. In this work, RF 
algorithms were used as implemented in the randomForest 
package in R version 3.53 (Liaw and Wiener, 2018). The 
input variables for RF were soil textural fraction contents 
(clay, silt, and sand), organic carbon (OC), bulk density 
(Db), land use class, and infiltration measurement method. 
The land use and infiltration method were defined as cate-
gorical variables with 7 and 12 categories, respectively. If 
one of the input variables was missing in a dataset, these 
datasets were not used to develop the RF model. The data-
base was split 70-30% into training and testing datasets, 
respectively. The default number of trees (500) was applied.  

The input variable importance was measured using the 
mean decrease accuracy (%IncMSE) as implemented in the 
R randomForest package. The Mean Decrease Accuracy 
(%IncMSE) reflects the loss in model accuracy when the 
variable is scrambled, i.e. its values are randomly replaced 
with values that have the same statistical distribution. The 
model decrease in accuracy computed for each tree in the 
forest and the percentage decrease in accuracy is averaged 
over all trees in order to obtain the mean value. 

RESULTS

The cumulative distribution functions (CDFs) of fitted 
parameters are shown in Fig. 2. The CDF of the Horton 
model parameter h1 have similar patterns for  H-all, H-best, 
and H-MDI datasets. The median value ranged from 0.52 
for H-best to 0.70 for H-MDI and the standard deviations 
ranged from 0.50 for H-MDI to 0.64 for H-best. Whereas 
the CDF of parameters h2 and h3 show similar patterns for 
H-all and H-best datasets, h2 and h3 CDFs for the H-MDI 
dataset have shapes that are different from those for H-all 
and H-best, and there is less variability in h2 and h3 for the 
H-MDI datasets. The standard deviations in logarithm val-
ue were 0.63 of the -MDI in parameter h3 in CDFs for the 
H-all, H-best, and H-MDI datasets, respectively. While the 
CDFs of each parameter of the Mezencev equation were 
similar across the subsets of M-all, M-best and M-DRI, the 
median value in parameter m1 for the M-DRI dataset was 
slightly less than parameter m1 at M-all and M-best. Only 
2% of the fitted values of m2 were larger than 1.0, which 
indicated the concave shapes of the cumulative infiltration 
curves. The other 98% of the datasets were convex with 
m2>1 as envisaged in the Mezencev (1948) work.

The root-mean-squared errors of the random for-
est models developed for parameter estimation are given 
in Table 2. The performance of the parameter estimation 
models in terms of RMSE values improved only slightly 
as the estimation was carried out only for datasets where 
the infiltration equations were performing better than their 
counterparts. The RMSE values of h1, h2, and h3 estimates 
for the H-best datasets were lower than those of the H-all 

Fig. 2. Cumulative distribution functions of the fitting parameters from the Horton and Mezencev infiltration equation;  H-all 
or M-all,  H-best or M-best, H-method or M-method: (a) parameter h1 from the Horton model, (b) parameter h2 
from the Horton model, (c) parameter h3 from the Horton model, (d) parameter m1 from the Mezencev model, (e) parameter m2 from 
the Mezencev model and (f) parameter m3 from the Mezencev model.
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datasets. Similarly, the RMSE values of m1, m2, and m3 esti-
mates for the M-best dataset were lower than those of the 
M-all dataset. A substantial decrease in RMSE occurred 
when the only datasets that were used were the ones for 
which (a) the equation performed better, and (b) the infil-
tration measurement method was the same. 

In this case, the RMSE values of h1, h2 and h3 decreased 
by 15, 22, and 6% and the RMSE values of m1, m2, and m3 
decreased by 2, 14, and 25%, respectively.

The one-to-one scatterplot comparison between the 
fitted and the estimated with random forest parameters of 
infiltration equations is shown in Fig. 3. These data are also 
characterised in the Supplemental Table S4 containing the 
R2 values. When H-best is considered rather than H-all, R2 
of the parameter h1 estimation result increases and R2 of the 
h2 and h3 parameters decreases. Similarly, when M-best is 
considered instead of M-all, R2 of the parameter m2 esti-
mation result increases and R2 of the m1 and m3 parameters 
decreases. In the majority of cases, the R2 values of the 
parameter estimates with datasets for specific methods are 
low because the range of parameter variation is comparable 
with the range of the estimation error variation (Fig. 2). The 
R2 value does not characterise the differences in the accura-
cy of the estimates in this case. 

The relative predictor importance ranked in terms of 
the Mean Decrease in Accuracy is shown in Table 3. Only 
the top three important predictors are listed. Infiltration 
measurement methods were the most important predictors 
for all of the parameters of both the Horton and Mezencev 
equations. Infiltration measurement were first ranked in 
terms of estimating all of the parameters  from H-all, M-all, 
H-best, and M-best datasets. The second most important 
predictors were the soil textural fractions (clay, sand, silt). 
The clay content achieved a slightly higher rank as a more 
important variable than sand and silt in all parameters of 
the Horton equation. In the estimation of h3, the bulk den-
sity was ranked in second place in the estimation scheme 
of H-all and third in the estimation scheme of H-best. Soil 
texture was found to be the most important predictor of the 
m3 parameter in the Mezencev equation. In the case of esti-
mations for a specific measurement method with H-MDI 

and M-DRI datasets, in which the infiltration method was 
not included as the predictor, the organic carbon content 
became one of the important predictors.

DISCUSSION

A comparison of the RMSE values of the parame-
ter predictive models showed that homogeneous datasets 
in terms of the model performance did not provide more 
accurate estimations, however, performance was improved 
for datasets that were homogeneous in terms of the mea-
surement method (Table 2). There may be several reasons 
for the influence of the measurement method. Soil surface 
preparation could be one of them. For example, Shao and 
Baumgartl (2014) compared ring infiltrometer and sprin-
kler infiltrometer measurements and noted that both the 
vegetation and surface sealing effects from raindrops were 
both affecting the infiltration measurements in rainfall sim-
ulation and were neglected in ring infiltrometry since the 
latter is commonly applied on soil stripped of vegetation 
and a levelled ground surface.

Another reason for the measurement method being 
among the most important predictors of the scale effect 
arises from the difference in the areas of contact surfaces 
between the infiltration measurement methods. For exam-
ple, the contact areas are 16 and 700 cm2 for the minidisc 
infiltrometer and double-ring infiltrometer, respectively. The 
infiltration flow occurs in different volumes and different 
horizons of soils, and the flow from different contact areas 
encounters different levels of soil structural heterogeneity. 
Previous studies showed that the contact area greatly affect-
ed the hydraulic conductivity measurements (Pachepsky et 
al. 2014); as the flow domain cross-section increased, the 
hydraulic conductivity could increase by one or two orders 
of magnitude and then stabilise. The pedotransfer functions 
for hydraulic conductivity improved when the contact area 
was included in the predictor list (Ghanbarian et al 2015). It 
appears that the contact area greatly influences not only the 
stationary stage of infiltration (from which the hydraulic 
conductivity value is derived) but also the parameters of the 
non-stationary phase.

The dimensionality of the flow domain in the soil may 
be yet another reason for the influence of the infiltration 
measurement method on the predictions of the parameters 

Ta b l e  1. Infiltration equations used in this study

Equation
Infiltration equations

Original form of the equation Equation forms in this study
Horton 

  

Mezencev  

F(t) – cumulative infiltration (cm) at time t (h). In the Horton Equation, fc – final or equilibrium infiltration rate (cm h-1), f0 – initial 
infiltration rate (cm h-1), k – constant representing the exponential rate of decrease of infiltration (h-1). In the Mezencev equation, k (cm 
h-a), a, unitless and f0 (cm h-1) are empirical constants (k > 0 and 0 < a < 1) for the Mezencev equation, h1, h2, h3 and m1, m2, m3  are 
fitting parameters in this study.
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of the infiltration equations. Rahmati et al. (2018) noted 
that the double-ring infiltrometer data in SWIG could be 
considered one-dimensional whereas many other methods 
provided 3D data. These authors suggested using different 
infiltration equations for different dimensionality of flow 
in the infiltration measurements. The practical aspect of 
the influential effect of the infiltration method on the pre-

dictions of parameters of the infiltration equations appears 
to be the need to develop different measurement-method 
specific predictive models for the infiltration equation 
coefficients.

When the same method was used, the soil textur-
al fractions and organic carbon content became the most 
important predictors (Table 3). It is interesting to note that 

Fig. 3. Comparison of fitted and estimated with random forest model parameters of infiltration equations; a, b, c – Horton equation 
for all database (H-all, ○) and for the datasets where Horton equation performed better than the Mezencev equation (H-best, ▲); d, e, 
f – Horton equation for all database (H-all, ○) and for the subset of H-best with mini disc infiltrometer measurements only (H-MDI, 
●); g, h, i – Mezencev equation for all database (M-all, ○) and for the datasets where Mezencev equation performed better than the 
Mezencev euqation (M-best, ▲); j, k, l – Mezencev equation for all database (M-all, ○) and for the subset of M-best with double ring 
infiltrometer measurements only (M-DRI, ●).



PARAMETERS OF EMPIRICAL INFILTRATION MODELS FROM THE GLOBAL DATASET 79

the soil bulk density was not in the list of the most influ-
ential inputs. It is possible that the relatively small sample 
taken to measure bulk density does not reflect the level of 
heterogeneity encountered by water flow in the double ring 
in the infiltrometer, and that it does not reflect the possibili-
ties for the distribution of water between vertical and lateral 
flows in the measurements with the minidisc infiltrome-
ter. The presence of organic carbon in the list of the most 
important predictors is expected since this is the available 
input that is most closely related to soil structure. Organic 
carbon is one of the most important predictors in the mod-
els for the parameters h1, h2, and m2 which are responsible 
for the initial part of the infiltration curve.

The absence of land use type in the list of the most 
important predictors was not expected since its impor-
tance has been emphasised in several previous studies (Van 
de Genachte et al., 1996; Kidwell et al., 1997; Shao and 
Baumgartl, 2014). However, these studies were performed 
on a relatively small scale. The global dataset in SWIG may 
allow for such a wide variety of soil conditions for the same 
land use category that the value of land use alone as a pre-
dictor becomes less significant. The infiltration rate should 
be affected by the initial water content in the soil, the water 
content of which was an important variable for predicting 
hydraulic conductivity (Araya and Ghezzehei, 2019). Since 
the initial soil water content is only available in 31% of 
the infiltration data in the SWIG database, initial soil water 
content was not included in this study.

The procedure for the comparison of model perfor-
mance could be one of the reasons for the lack of substantial 
model performance improvement after the selection of the 
data subset with which one model performed better than the 
others. A simple comparison of RMSE values does not reveal 
whether or not the difference in performance is statistically 
significant. Information concerning the uncertainty in the 
data is required to establish thresholds for the differences in 
RMSE above which the performance of the models would 
be significantly different. The values of RMSE for the 
parameters h3 and m3 which are responsible for the station-
ary portion of the cumulative infiltration curve, are lower 
than the RMSE estimates of the hydraulic conductivity of 
the soil (Pachepsky and Park, 2015; Arays and Ghezzehei, 
2019). In general, the accuracy of the parameter estimation 
models (Table 2) cannot be evaluated without reference to 

Ta b l e  2. Root-mean-squared errors of logarithms of parameters 
for Horton and Mezencev equations estimated using random for-
est modeling 

Dataset
Horton equation  F(t) = h3t + h1 (1 - e-h2 t)

h1 h2 h3

H-all (958)* 0.388 0.361 0.330
H-best (504) 0.372 0.347 0.328
H-MDI (142) 0.317 0.270 0.306

Mezencev equation  F(t) = m1 t m2 + m3t

m1 m2 m3

M-all (728) 0.456 0.275 0.487
M-best (378) 0.451 0.275 0.474
M-DRI (45) 0.441 0.238 0.355

*Total number of measurements in the dataset.

Ta b l e  3. Relative importance of the top three predictors from each parameter of Horton and Mezencev infiltration models based on 
Mean Decrease Accuracy H-method measured by the mini-disk infiltrometer and M-method measured by the double-ring infiltrometer 

Dataset
Horton equation  F(t) = h3t + h1 (1 - e-h2 t) 

h1 h2 h3

H-all
Method Clay OC Method Sand Clay Method Db Silt

46 35 31 90 32 30 69 34 29

H-best
Method Clay Sand Method Clay Sand Method Silt Db

40 33 31 57 27 23 50 23 22

H-MDI 
Clay OC Silt Silt Sand OC Sand Clay OC
30 23 15 18 11 10 18 15 11

Mezencev equation  F(t) = m1 t m2 + m3t

m1 m2 m3

M-all Method Sand Clay Method Silt OC Method Clay Sand
65 24 22 45 22 19 36 27 26

M-best
Method Sand Silt Method Db Clay Method Clay Sand

57 16 15 26 16 15 36 23 22

M-DRI
Sand Silt Clay OC Land Silt Silt Sand Clay
12 11 9 15 12 8 21 12 11
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their future applications. The values of RMSE will serve 
to quantify the degree of uncertainty and can be used in 
hydrological computations to establish the uncertainty of 
the simulated target values of storage, flux and carrying 
capacity of the water.

CONCLUSIONS

We estimated the parameters of the Horton and 
Mezencev infiltration equations as they are affected by soil 
properties, land use category, and the infiltration meas-
urement method of 1850 datasets from the Soil Water 
Infiltration Global database. The application of the random 
forest algorithm led to the following conclusions:

1. The infiltration measurement method was by far the 
most important predictor of parameters followed by soil 
texture and organic carbon. 

2. The accuracy of the predictions was moderate. 
3. The accuracy of parameter estimation in the infiltra-

tion equations did not reflect the accuracy of the infiltration 
data approximation with these equations. 

4. The functional evaluation of the predictive models 
should be performed before using them in the relevant 
application. 

5. The creation of the predictive equations for specific 
infiltration methods may improve the accuracy of the infil-
tration parameter estimation.

Conflict of interest: The authors declare no conflict of 
interest.

REFERENCES

Araya S.N. and Ghezzehei T.A., 2019. Using machine learning 
for prediction of saturated hydraulic conductivity and its 
sensitivity to soil structural perturbations. Water Res. Res., 
55(7), 5715-5737. https://doi.org/10.1029/2018wr024357

Bayabil H.K., Dile Y.T., Tebebu T.Y., Engda T.A., and 
Steenhuis T.S., 2019. Evaluating infiltration models and 
pedotransfer functions: implications for hydrologic mode-
ling. Geoderma, 338, 159-169. https://doi.org/10.1016/j.
geoderma.2018.11.028

Brevnova E.V., 2001. Green-Ampt infiltration model parameter 
determination using SCS curve number (CN) and soil tex-
ture class, and application to the SCS runoff model. 
Graduate Theses, Dissertations, and Problem Reports, 1152. 
https://researchrepository.wvu.edu/etd/1152

Brutsaert W., 1977. Vertical infiltration in dry soil. Water Res. 
Res., 13(2), 363-368.
https://doi.org/10.1029/wr013i002p00363

Dashtaki S.G., Homaee M., Mahdian M.H., and Kouchakzadeh 
M., 2009. Site-dependence performance of infiltration 
models. Water Res. Manag., 23(13), 2777-2790. https://doi.
org/10.1007/s11269-009-9408-3

de Almeida W.S., Panachuki E., de Oliveira P.T.S., da Silva 
Menezes R., Sobrinho T.A., and de Carvalho D.F., 2018. 
Effect of soil tillage and vegetal cover on soil water infiltra-
tion. Soil Till. Res., 175, 130-138. https://doi.org/10.1016/j.
still.2017.07.009

Farid H.U., Mahmood-Khan Z., Ahmad I., Shakoor A., Anjum 
M.N., Iqbal M.M., Mubeen M., and Asghar M., 2019. 
Estimation of infiltration models parameters and their com-
parison to simulate the onsite soil infiltration characteristics. 
Int. J. Agric. Biol. Eng., 12(3), 84-91.
https://doi.org/10.25165/j.ijabe.20191203.4015

Furman A., Warrick A.W., Zerihun D., and Sanchez C.A., 
2006. Modified Kostiakov infiltration function: Accounting 
for initial and boundary conditions. J. Irrig. Drain. Eng., 
132(6), 587-596.
https://doi.org/10.1061/(asce)0733-9437(2006)132:6(587)

Ghanbarian B., Taslimitehrani V., Dong G., and Pachepsky 
Y.A., 2015. Sample dimensions effect on prediction of soil 
water retention curve and saturated hydraulic conductivity. 
J. Hydrol., 528, 127-137.
https://doi.org/10.1016/j.jhydrol.2015.06.024

Green W.H. and Ampt G.A., 1911. Studies on soil physics. Part 
I. The flow of air and water through soils. J. Agric. Sci., 4, 
1-24. 

Hastie T., Tibshirani R., and Friedman J., 2009. The elements 
of statistical learning: data mining, inference and predic-
tion. Springer Science+Business Media, New York, NY. 
http://www.springerlink.com/index/D7X7KX6772HQ 
2135.pdf 

Holtan H.N., 1961. A Concept for Infiltration Estimates in 
Watershed Engineering. USDA Bulletin, Washington, DC, 
USA. 

Horton R.E., 1940. An approach towards a physical interpreta-
tion of infiltration capacity. Soil Sci. Soc. Am. J., 5, 
399-417. 

Kidwell M.R., Weltz M.A., and Guertin D.P., 1997. Estimation 
of green-Ampt effective hydraulic conductivity for range-
lands. Rangeland Ecol. Manag./J. Range Manag. Archives, 
50(3), 290-299. https://doi.org/10.2307/4003732

Kostiakov A.N., 1932. On the dynamics of the coefficients of 
water percolation in soils and on the necessity of studying it 
from a dynamic point of view for purpose of amelioration. 
Trans. Sixth Comm. Int. Soc. Soil Sci., 1, 7-21. 

Kutílek M. and Krejča M., 1987. A three-parameter infiltration 
equation of the Philip’s type solution (in Czech). Vodohosp.
Čas., 35, 52-61. 

Lei G., Fan G., Zeng W., and Huang J., 2020. Estimating 
parameters for the Kostiakov-Lewis infiltration model from 
soil physical properties. J. Soils Sediments, 20(1), 166-180. 
https://doi.org/10.1007/s11368-019-02332-4

Liaw A. and Wiener M., 2018. Breiman and Cutler’s Random 
Forests for Classification and Regression. R Package ‘ran-
dom Forest. https://cran.r-Fproject.org/web/packages/
randomForest/index.html 

Maheshwari B.L., 1997. Interrelations among physical and 
hydraulic parameters of non-cracking soils. J. Agric. Eng. 
Res., United Kingdon, 68(4), 297-309.

Mazloom H. and Foladmand H., 2013. Evaluation and determi-
nation of the coefficients of infiltration models in Marvdasht 
region, Fars province. Int. J. Advanced Biolog. Biomedical 
Res., 1(8): 822-829. 

Mezencev V.J., 1948. Theory of formation of the surface runoff 
(in Russian). Meteorol. Gidrol., 3, 33-40. 



PARAMETERS OF EMPIRICAL INFILTRATION MODELS FROM THE GLOBAL DATASET 81

Mishra S.K., Tyagi J.V., and Singh V.P., 2003. Comparison of 
infiltration models. Hydrol. Process., 17(13), 2629-2652. 
https://doi.org/10.1002/hyp.1257

Pachepsky Y., Guber A.K., Yakirevich A.M., McKee L., Cady 
R.E., and Nicholson T.J., 2014. Scaling and pedotransfer 
in numerical simulations of flow and transport in soils. 
Vadose Zone J., 13(12).
https://doi.org/10.2136/vzj2014.02.0020

Pachepsky Y. and Park Y., 2015. Saturated hydraulic conductiv-
ity of US soils grouped according to textural class and bulk 
density. Soil Sci. Soc. Am. J., 79(4), 1094-1100. https://doi.
org/10.2136/sssaj2015.02.0067

Pachepsky Y. and Rawls W.J., 2003. Soil structure and pedo- 
transfer functions. Eur. J. Soil Sci., 54(3), 443-452. https://
doi.org/10.1046/j.1365-2389.2003.00485.x

Pandey P.K. and Pandey V., 2019. Estimation of infiltration rate 
from readily available soil properties (RASPs) in fallow 
cultivated land. Sust. Water Res. Manag., 5(2), 921-934. 
https://doi.org/10.1007/s40899-018-0268-y

Parchami-Araghi F., Mirlatifi S.M., Dashtaki S.G., and 
Mahdian M.H., 2013. Point estimation of soil water infil-
tration process using Artificial Neural Networks for some 
calcareous soils. J. Hydrol., 481, 35-47. https://doi.
org/10.1016/j.jhydrol.2012.12.007

Philip J.R., 1957. The theory of infiltration: The infiltration equa-
tion and its solution. Soil Sci., 83, 345-357. https://doi.
org/10.1097/00010694-195705000-00002

R Core Team. R, 2019. The R project for statistical computing. 
http://www.R-project.org/ 

Rahmati M., 2017. Reliable and accurate point-based prediction 
of cumulative infiltration using soil readily available char-
acteristics: a comparison between GMDH, ANN, and MLR. 
J. Hydrol., 551, 81-91.

https://doi.org/10.1016/j.jhydrol.2017.05.046
Rahmati M., Weihermüller L., Vanderborght J., Pachepsky Y.A., 

Mao L., Sadeghi S.H., Moosavi N., Kheirfam H., Montzka 
C., Van Looy K., and Toth B., 2018. Development and anal-
ysis of the Soil Water Infiltration Global database. Earth 
System Science Data, 10, 1237-1263. 

Salahou M.K., Jiao X., and Lü H., 2020. Assessment of empiri-
cal and semi-empirical models for estimating a soil 
infiltration function. Trans. ASABE, 63(4), 833-845. htt-
ps://doi.org/10.13031/trans.13639

Santra P., Kumar M., and Kumawat R.N., 2021. Characteri- 
zation and modeling of infiltration characteristics of soils 
under major land use systems in Hot Arid Region of India. 
Agric. Res., 1-17.
https://doi.org/10.1007/s40003-020-00511-1

Shao Q. and Baumgartl T., 2014. Estimating input parameters 
for four infiltration models from basic soil, vegetation, and 
rainfall properties. Soil Sci. Soci. Am. J., 78(5), 1507-1521. 
https://doi.org/10.2136/sssaj2014.04.0122

Swartzendruber D., 1987. A quasi‐solution of Richards’ Equa- 
tion for the downward infiltration of water into soil. Water 
Res. Res., 23(5), 809-817.
https://doi.org/10.1029/wr023i005p00809

Van de Genachte G., Mallants D., Ramos J., Deckers J.A., and 
Feyen J., 1996. Estimating infiltration parameters from 
basic soil properties. Hydrol. Processes, 10(5), 687-701.  
https://doi.org/10.1002/(sici)1099-1085(199605)10:5<687 
::aid-hyp311>3.0.co;2-p



SUPPLEMENTUM 

Table S1. Soil properties, number of data entries in the SWIG database (out of 5023 in total), and their 

statistical description (Rahmati et al., 2018) 

Soil properties Availability Fr (%) Mean Min Max Median CV (%) 

Clay (%) 3842 76 24 0 80 20 64 

Silt (%) 3842 76 36 0 82 37 52 

Sand (%) 3842 76 41 1 100 38 63 

Bulk density (g cm-3) 3295 66 1.32 0.14 2.81 1.35 20 

Organic carbon (%) 3102 62 3 0 88 1 200 

Fr - frequency (%), Min - minimum, Max - maximum, CV - coefficient of variation. 

 

Table S2. Land use type of soils (modified from Rahmati et al., 2018) 

Land use Frequency  Land use Frequency 

Agriculture 2019 Forest 204 

Grass 933 Others 122 

Pasture 233 Urban 103 

Garden 216   

 

 

Table S3. Infiltration methods used to measure infiltration (from Rahmati et al., 2018) 

Method Number 
of datasets 

Method Number 
of datasets 

Double ring infiltrometer 828 Guelph permeameter 181 

Single ring infiltrometer 570 Aardvark permeameter 50 

Disc infiltrometer 607 Rainfall simulator 374 

Mini disc infiltrometer 1140 Linear source method 10 

Micro infiltrometer 36 Point source method 4 

Hood infiltrometer 23 Beerkan(Best) 197 

Tension infiltrometer 752 Not reported 251 



Table S4. R2 values of parameters for the Horton and Mezencev equations estimated using random forest 

modelling  

Dataset 
Horton equation  𝐹ሺ𝑡ሻ ൌ ℎଷ𝑡 ൅ ℎଵ ൫1 െ 𝑒ି௛మ௧൯ 

h1  h2  h3 

H-all (958)*  0.569   0.757   0.532 

H-best (504)  0.586   0.746   0.451 

H-MDI (142)  0.601   0.004   0.358 

 Mezencev equation  𝐹ሺ𝑡ሻ ൌ 𝑚ଵ𝑡௠మ ൅ 𝑚ଷ𝑡 

m1  m2  m3 

M-all (728)  0.487   0.203   0.377 

M-best (378)  0.509   0.282   0.388 

M-DRI (45)  0.542   0.220   0.513 

*Total number of measurements in the dataset. 
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